Hibaüzenet

  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 349 sor).
  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 370 sor).
  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 349 sor).
  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 370 sor).
  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 349 sor).
  • Notice: Trying to access array offset on value of type null tb_megamenu_sync_config() függvényben (/data/drupal/foldtan/sites/all/modules/tb_megamenu/tb_megamenu.functions.inc 370 sor).

Előadóülés hétfőn: Prof. Matthew A Perras:  Making connections towards data driven underground excavation machine .....

Leírás: 

Magyarhoni Földtani Társulat Mérnökgeológiai és Környezetföldtani Szakosztálya és a  

BME Geotechnika és Mérnökgeológia Tanszéke 
Szeretettel meghívja nyilvános előadóülésére, amelyet 

Prof. Matthew A Perras (York University, Kanada) 
Making connections towards data driven underground excavation machine learning models 
címen tart 

 

Előadóülés ideje:2023. október 2 (hétfő), 16.00 óra 

Helyszíne:  Budapesti Műszaki és Gazdaságtudományi Egyetem (BME), Geotechnika és Mérnökgeológia Tanszék 
H-1111 Budapest, Műegyetem rkp. 3, K. épület (BME központi épüket), magasföldszint 10 (Kmf10

További részletek: 

Előadó:  Prof. Matthew A Perras, Associate Professor of Geological & Geotechnical Engineering Department of Civil Engineering, Bergeron Centre for Engineering Excellence Lassonde School of Engineering, York University 

Cím:  Making connections towards data driven underground excavation machine learning models 

Rövid összefoglaló: 

For underground excavations there has never been a better time to install instrumentation to monitor rock mass deformation and hazards. Instruments that can monitor the full spectrum of ground conditions are now more accessible and can live stream the data anywhere in the world. This provides an opportunity to use machine learning and new data-driven techniques to improve how we use the data, to improve operations, and our understanding of physical phenomenon driving deformations. In particular, the use of integrated machine learning and traditional models is a promising emerging avenue. Recent work, in collaboration with industry, has shown successful applications of various machine learning approaches, to integrate sensor data in underground design and operation. In addition, ancient Egyptian tombs are also being monitored by the authors, along with environmental parameters, to understand complex influences on crack growth and rock mass deformations. Th ancient records could open new insights into the long-term behaviour of rocks that have yet to be addressed in our modern underground designs. Many opportunities exist, further case studies are needed to continue to validate these methods, increase confidence in the community, and ultimately improve our understanding of the complexities of underground excavation behaviour. 

Dr. Török Ákos
tanszékvezető, egyetemi tanár
Geotechnika és Mérnökgeológia Tanszék