- Magyar
- English
Online előadás: 2020.06.08. Fall András: "Unraveling structural diagenetic processes in sedimentary basins using fluid inclusions
MEGHÍVÓ Fall András, a University of Texas at Austin kutatójának előadására: "Unraveling structural diagenetic processes in sedimentary basins using fluid inclusions".
A továbbra is fennálló rendhagyó körülmények miatt előadás sorozatunk következő részére is online fogunk sort keríteni 2020. 06. 08-án, 17:00-től.
Az előadás a Zoom felületén lesz követhető.
Az előadás előzetes regisztrációhoz kötött. Regisztrálni az alábbi linken lehet a név, és az e-mail cím megadásával:
https://forms.gle/yHXkG8MeEdzjLzME6
Regisztráció után, az előadás előtti napokban minden résztvevő kap egy meghívót a Zoom felületre. A kapcsolódáshoz szükséges tudnivalókat az e-mailben fogjuk elküldeni.
Az előadásra minden érdeklődőt szeretettel várunk!
További információ: cszabo@elte.hu; aradi.laszloelod@ttk.elte.hu
Az előadás kivonata:
Unraveling structural diagenetic processes in sedimentary basins using fluid inclusions ,András Fall
Jackson School of Geosciences, The University of Texas at Austin
Structural diagenesis studies the interaction of mechanical and chemical processes in sediments or sedimentary rocks. Attesting deformation, natural fractures and faults are pervasive in low-porosity rocks in sedimentary basins. In the diagenetic realm fractures in rocks locally affect the flow of hot, reactive fluids and rock strength. Hot fluids cause dissolution and cement precipitation, and other chemical reactions, which can profoundly modify where fracture porosity, and as a consequence, connectivity exists. Fractures that are open or partially sealed provide pathways between source and reservoir layers during hydrocarbon and/or water charge, or between matrix pores and hydraulic fractures and the well bore during production of hydrocarbons, water, and hydrothermal energy, and can affect rock strength, the safe storage of CO2, wastewater, or other contaminants, including nuclear waste. Fractures form in sedimentary basins as a result of various combinations of tectonic, burial and thermal loading, pore fluid pressure, and evolving rock.
Although fractures may form in different settings at different locations, and at different times hroughout a basin evolution history, they can potentially show similar patterns and geometric attributes, such as their position relative to bedding, shapes, aperture sizes, and cement infill types and textures. The similarity of patterns and geometric shapes impedes interpretation of intrinsically limited subsurface fracture data. Cement infills and textures, and fluid inclusions trapped within, on the other hand, can provide powerful evidence useful for unraveling the origin and timing of fracture formation. This presentation offers a glimpse into how analysis of fluid inclusion assemblages in fracture cement deposits and host rocks is revolutionizing fracture description and nterpretation, and shows how the complexity of cement deposits and fluid inclusion assemblages is the key to unlocking the otherwise difficult-to-interpret simple patterns and geometric shapes of opening-mode fractures.